BRAIN BIOENERGETICS AND OXIDATIVE STRESS IN SEPSIS

Fernando A. Bozza, MD, PhD

Intensive Care Lab, Instituto de Pesquisa Clínica Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brasil.
BRICNet - Brazilian Research in Intensive Care Network
Neuropsychological effects of Critical Illness

Acute brain dysfunction

Cognitive (delirium)
Autonomic
Immune

Long-term consequences

Cognitive decline
Psychological impairment
Long term cognitive impairment after critical illness

- **Association Between Acute Care and Critical Illness Hospitalization and Cognitive Function in Older Adults** - Ehlenbach, W. J. et al. JAMA 2010;303:763-770
 - 2.3x likelihood of cognitive decline after critical illness hospitalization compared with those who had no hospitalization

- **Long-term cognitive impairment and functional disability among survivors of severe sepsis**. Iwashyna, TJ et al. JAMA. 2010;304(16):1787-1794
 - Severe sepsis in this older population was independently associated with substantial and persistent new cognitive impairment and functional disability among survivors.
Infection - Systemic inflammation

“Cytokines storm”

BBB dysfunction

Neuroinflammation → Mitochondrial dysfunction

Bioenergetic Imbalance

Neuronal injury

Delirium, Dementia and long-term poor outcome

Old age
Anti-Ch
CNS infection
Dementia
Sepsis
- CLP
- LPS
- Fecal Peritonitis
- Pneumonia

Control
- Sham, vehicle

Histopathology:
- Glia activation
- Oxidative stress
- Neuronal injury (NeuN, Fluorojade)

Neurological and cognitive assessment:
- Severity score (acute)
- Spatial memory (Open field, Object recognition, Water maze)
- Aversive memory (inhibitory avoidance task)
- Depression (forced swimming, tail suspension)
- Anxiety (elevated maze)

Biochemistry:
- Oxidative stress (HNE, NT)
- Apoptosis (TUNEL, caspases)
- Synaptic proteins
Systemic inflammation in experimental sepsis:

Tissue hypoxia, bioenergetic imbalance (↑AMP/ATP ratio)
Cognitive testing after *P. Aeruginosa* pneumonia

Freezing - 13 dias

Freezing - 50 dias
Brain Metabolism

Although the brain represents only 2% of the body weight:

- It receives 15% of the cardiac output,
- 20% of total body oxygen consumption.
- 25% of total body glucose utilization.
Brain Metabolism

• **Glucose oxidation**: provides more than 90% of the energy needed.

• **Oxidation of non-glucose substrates**: ketones/lactate during prolonged fasting; not in everyday life.

• Brain function almost totally dependent on a continuous supply of glucose and oxygen from the arterial circulation.
Astrocyte-neuron lactate shuttle model
Brain Metabolism

• **Glycogen**---stored exclusively in glial cells (astrocytes). Metabolize to lactate that can be taken up and used as fuel by neurons.

• Low content in brain (~3 mmol/kg). Unable to sustain brain metabolism for more than 4 to 5 minutes.
Aerobic metabolism increase the energy efficiency between nutrient oxidation and ATP synthesis.

<table>
<thead>
<tr>
<th>TABLE 19–5</th>
<th>ATP Yield from Complete Oxidation of Glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>Direct product</td>
</tr>
<tr>
<td>Glycolysis</td>
<td>2 NADH (cytosolic) 2 ATP</td>
</tr>
<tr>
<td>Pyruvate oxidation (two per glucose)</td>
<td>2 NADH (mitochondrial matrix)</td>
</tr>
<tr>
<td>Acetyl-CoA oxidation in citric acid cycle (two per glucose)</td>
<td>6 NADH (mitochondrial matrix) 2 FADH₂ 2 ATP or 2 GTP</td>
</tr>
<tr>
<td>Total yield per glucose</td>
<td></td>
</tr>
</tbody>
</table>

*The number depends on which shuttle system transfers reducing equivalents into the mitochondrion.

Table 19-5
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company
Mitochondrial dysfunction

Functional changes

Inhibition of Krebs Cycle Enzymes

Disturb on mitochondrial respiratory chain function

Dissipation of Mitochondrial Membrane Potential ($\Delta \Psi_m$)

Electron transport blockade

Reduction of ATP Synthesis
Sepsis induces brain mitochondrial dysfunction

Increased O_2 consumption non-associated to ATP synthesis

Decreased PHOSPHOX efficiency

Decreased mitochondrial content

Proton leak and mitochondrial depolarization

Critical Care Medicine 2008 Jun;36(6):1925-32.
Sumary of brain mitochondrial dysfunctions during sepsis

↓ Cytochromes content

↑ proton leak

↓ membrane potential

↓ BIOENERGETIC EFFICIENCY (ADP:O)
INCREASE IN 18-FDG UPTAKE IN LPS-INDUCED SEPSIS

Control

LPS 2h

LPS 6h

LPS 24h

BRAIN 18-FDG UPTAKE

* P < 0.05 n=19
Endotoxemia increase the 14C-glucose uptake in brain

Control

LPS 2h

μCi/g

Control LPS 2h
INCREASED BRAIN GLUCOSE UPTAKE IN EXPERIMENTAL SEPSIS

2-NBDG uptake in brain slices

Hexokinase activity (24h)
High metabolic rate

Mitochondrial Dysfunction

Dependence on glucose uptake

SEPSIS
Limited O₂ and glucose delivery (hypotension, hypoxemia, Hypoglycemia)

Tissue ischemia and organ dysfunction

Delirium
Long-term cognitive impairment
4-HNE staining in the corpus callosum (cc) and around ventricles (v)
Around the central ventricle

control

Sepsis 6h
Mitochondrial Hydrogen Peroxide Generation in Septic Brain Is Reduced

A

B

25 pmols

H$_2$O$_2$

2.5 min.

FCCP 5 μM

oligo 1 μg/mL

ADP 1 mM

suc 10 mM

sham

CLP

0

10

20

H$_2$O$_2$ (pmols/min/mg ptn)

basal

suc 10 mM

ADP 1 mM

Oligo 1 μg/mL

FCCP 5 μM

sham

CLP

*
Metabolic coupling between glucose and superoxide production:

Apocynin treatment prevents oxidative stress and astrogliosis in the hippocampus early after sepsis.

Oxidative stress in the hippocampus is associated with Nox2 expression after sepsis induction.

The role of Nox2-derived ROS in the development of cognitive impairment after sepsis

Apocynin treatment prevents cognitive impairment after sepsis
WT treated with Apocynin

CD11b

GFAP

NOX2 deficient (gp91^--^--)

CD11b

GFAP

Hernandes et al. Journal of Neuroinflammation 2014, 11:36
http://www.jneuroinflammation.com/content/11/1/36
THERAPEUTIC TARGETS IN SEPTIC ENCEPHALOPATHY:

APOCYNIN

AMPK \uparrow AMP

ATP

BBB damage

Microglia activation

Neuronal damage

oxidative stress

O_2^-

H_2O_2

$ONOO^-$

Glutamate Ca^{2+}

NMDA-R

NO

$PI3K/p38$

iNOS

NfkB

ppp

glucose

NADPH + O_2

glucose

glycolysis

mitochondrial dysfunctions

swelling, mPTP, proton leak, uncoupling

inflammation

bioenergetic failure

apoptosis

low NAD

cytokines
Concluding remarks:

- Sepsis causes brain tissue hypoxia and bioenergetic imbalance
- There is mitochondrial dysfunction and compensatory increase in glucose uptake
- Deregulation in metabolic adaptation pathways lead to oxidative stress and organ dysfunction
Acknowledgements

FIOCRUZ
Joana D Avila
Flora Magno
Corolina Moraes
Patricia Reis
Hugo Castro Faria Neto

University of Utah
Kathryn Morton

UFRJ
Rosana Rodrigues
Marcus Oliveira
Flavia Alcantara
Rogério Panizzuti
Debora Foguel

Institute Pasteur
Tarek Sharshar
Fabrice Chretien

CNPq

FAPERJ
AMPK and NO signaling to brain metabolic adaptation in sepsis:

AMPK and NO signaling

- **AMPK** (40 KDa)
- **iNOS** (130 KDa)
- **Cyclophilin** (18 KDa)

Graphs

- **AMPK** expression over time (0h, 6h, 24h, 3 days)
- **iNOS** expression over time (0h, 6h, 24h, 3 days)

Diagrams

- **NO**
- **OXIDATIVE STRESS**
- **ROS**
- **AMPK**
- **AMP/ATP**
- **Glucose uptake**
- **ATP**

Legend

- **Load control**