The effect of chronic stress on T cell-induced neuroinflammation

Neurobiology of Stress
Paris, June 2014

Alon Monsonego, Ph.D.

The Shraga Segal Department of Microbiology and Immunology and
The National Institute for Biotechnology in the Negev

Ben-Gurion University
Israel
Immunity

Reduced lymphocyte function

Impaired cytokine homeostasis

Disregulation of innate and adaptive immunity

Brain function and repair

Protein aggregation (amyloid beta-peptide, α-synuclein)

Chronic glial activation

 Reactive oxygen species

Glutamate toxicity

Stress hormones

Cognitive Decline/Neurodegeneration

(Immunosenescence/Peripheral Inflammation)
How chronic stress or inflammation impair the immunomodulatory functions of the HPA?

- Aging and Neurodegenerative diseases
- Autoimmunity and autoinflammation
Experimental design:

CVS (chronic variable stress) for 24 days

EAE (experimental autoimmune encephalomyelitis) for 15 days

Behavior
T-cell activation

Cort; body weight

Cort; clinical score; T-cell activation

24 days

15 days
EAE induction and course

- **T-cell activation**
- **Acute**
- **Remission**
- **Relapse**

Disease score

10-15 Days following MOG immunization

- Aggressive T-cell response
- Regulatory mechanisms
T-cell mediated paralysis in a mouse model of multiple sclerosis:

Mice injected with myelin basic protein and complete Freund's adjuvant develop EAE and are paralyzed.

The disease is mediated by myelin basic protein-specific T_H^1 cells.

Disease can be transmitted by transfer of T cells from affected animal.

Figure 13-3 Immunobiology, 6/e. (© Garland Science 2005)
Function of lymphocyte subpopulations in EAE:

Proinflammatory
- Microglia activation (phagocytosis)
- Severe brain inflammation/autoreactivity

Immunoregulatory
- Chemokines (Leukocyte recruitment)
- Brain antibodies
- Neurotrophic factors
- Neurogenesis/Oligodendrogeneration

Neuroprotective
- CD11c+
- IL-17
- Th1, IFN-γ
- Th2, IL-10, IL-4
- Treg, IL-10, TGF-β
EAE induction and course

T-cell activation

Disease score

Acute

Remission

Relapse

Days following MOG immunization

10-15
Male and female C57BL6 mice differentially respond to chronic variable stress
CVS induces impaired CORT response to stimuli

- Non-stressed
- Stressed

CORT levels (ng/ml)

Weeks

Days post MOG immunization

CORT (ng/ml)
Experimental autoimmune encephalomyelitis (EAE) is more severe in male than in female mice.

Days post onset
Clinical score

- Females
- Males

* * * * * * * * * *

Days post onset
Clinical score

Days post onset
CVS exacerbates experimental autoimmune encephalomyelitis in female mice.
T-cell activation does not change in stressed mice

<table>
<thead>
<tr>
<th></th>
<th>IL-2</th>
<th>IFN-γ</th>
<th>IL-17</th>
<th>IL-4</th>
<th>TNF-α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-stressed</td>
<td>1881 ±52.9</td>
<td>40773 ±3067</td>
<td>1576 ±147</td>
<td>718 ±68</td>
<td>625 ±72</td>
</tr>
<tr>
<td>Stressed</td>
<td>1675 ±226</td>
<td>39560 ±6576</td>
<td>1735 ±214</td>
<td>800 ±52</td>
<td>587 ±79</td>
</tr>
</tbody>
</table>
CVS decreases the sensitivity of Th1 and Th17, but not Th2, effector T cells to the immunosuppressive effects of methylprednisolone (MP).
Stress induces increased Th1/Th2 and Th17/Th2 ratios
CVS decreases the fraction of FoxP3 regulatory cells among CD4 T cells

p=0.08
Chronic stress

Homeostatic stress management

Acute inflammation

Corticosterone (CORT)

Anti-inflammatory cytokine

Pro-inflammatory cytokine

Treg

CORT-sensitive Teff

CORT-resistant Teff

Immune regulation

Pathogenic autoimmunity

Corticosterone (CORT)

Harpaz Et al., EJI 2013
Increased effector CD4 T cells in elderly human subjects

Harpaz et al, in preparation
Consequences of Immunosenescence:

- Declined immunity
- ?
- Immune dysregulation: CORT resistance and enhanced T cell-induced inflammation
- ?
- Accelerated Aging and Alzheimer’s disease
Chronic HPA activation

Resistance to steroid treatment Loss of immune regulation

Cort resistance

Chronic HPA activation

Peripheral blood
Mononuclear cells

Peripheral infection/sepsis

Autoimmune diseases

Stress Aging/ Neurodegenerative diseases
Diagnostic kit to determine the loss of immune potency and regulation resulting from chronic stress and inflammation

Performed on isolated PBMCS out of 5-10 ml of blood

Clinical assessments:
- Steroid treatment efficacy
- Stress progression and its impact on immune functionality (T cells, monocytes, DCs)
- Disease state and prognosis
Alzheimer’s diseases:
- Protein toxicity
- Chronic glial activation
- Reactive oxygen species
- Cytokine disregulation (TNF-α, IL-1β)
- Demyelination

Repair mechanisms:
- Clearance of damaged proteins
- Neuroprotection
- Neurogenesis
- Remyelination
- Cytokine homeostasis

Clinical symptoms

Stress management Exercise Nutrition and supplements

Ageing

Immune modulation

Alzheimer’s diseases:
- Protein toxicity
- Chronic glial activation
- Reactive oxygen species
- Cytokine disregulation (TNF-α, IL-1β)
- Demyelination

Clinical symptoms
Acknowledgments:

Students and postdocs at the BGU:

Anna Nemirovski
Rona Baron
Roy Elmaliach
Idan Harpaz
Jenny Shapiro
Itai Strominger
Shira Or
Nitzan Levi
Kati Vinogradov
Kate Eremenko
Niva Blum

The National Institute of biotechnology in the Negev and The Department of Microbiology and Immunology Ben-Gurion University, Israel

Collaborations:

Trevor Owens, Ph.D.
Howard Weiner, M.D.
Irun Cohen, M.D.
Steffen Jung, Ph.D.
Alon Friedman, Ph.D.
Smadar Cohen, Ph.D.
Eitan Rubin, Ph.D.
Hagit Cohen, Ph.D.
Ilya Fleidervish, Ph.D.
Bente Finsen, Ph.D.
Tzvi Dwolatzky, MD